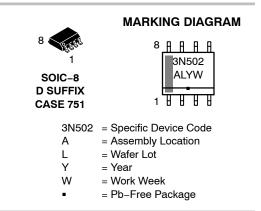
14 MHz to 190 MHz PLL Clock Multiplier

NB3N502

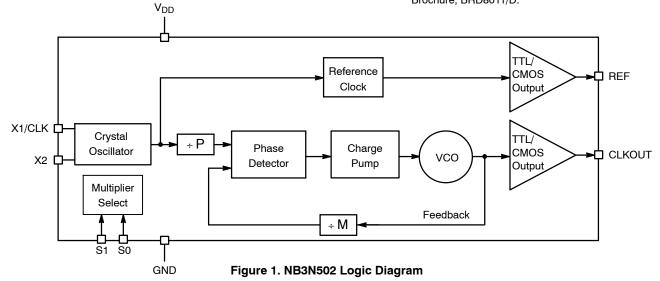
Description

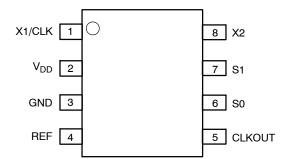
The NB3N502 is a clock multiplier device that generates a low jitter, TTL/CMOS level output clock which is a precise multiple of the external input reference clock signal source. The device is a cost efficient replacement for the crystal oscillators commonly used in electronic systems. It accepts a standard fundamental mode crystal or an external reference clock signal. Phase–Locked–Loop (PLL) design techniques are used to produce an output clock up to 190 MHz with a 50% duty cycle. The NB3N502 can be programmed via two select inputs (S0, S1) to provide an output clock (CLKOUT) at one of six different multiples of the input frequency source, and at the same time output the input aligned reference clock signal (REF).


Features

- Clock Output Frequency up to 190 MHz
- Operating Range: $V_{DD} = 3 V$ to 5.5 V
- Low Jitter Output of 15 ps One Sigma (rms)
- Zero ppm Clock Multiplication Error
- 45% 55% Duty Cycle
- 25 mA TTL-level Drive Outputs
- Crystal Reference Input Range of 5 27 MHz
- Input Clock Frequency Range of 2 50 MHz
- Available in 8-pin SOIC Package or in Die Form
- Full Industrial Temperature Range –40°C to 85°C
- These are Pb-Free Devices

ON Semiconductor®


www.onsemi.com


ORDERING INFORMATION

Device	Package	Shipping [†]
NB3N502DG	SOIC-8 (Pb-Free)	98 Units / Rail
NB3N502DR2G	SOIC-8 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NB3N502

Table 1. CLOCK MULTIPLIER SELECT TABLE

S1*	S0**	Multiplier
L	L	2X
L	Н	5X
М	L	3X
М	Н	3.33X
Н	L	4X
Н	Н	2.5X

L = GND

 $H = V_{DD}$ M = OPEN (unconnected)

* Pin S1 defaults to M when left open

** Pin S0 defaults to H when left open

Table 2. OUTPUT FREQUENCY EXAMPLES

Output Frequency (MHz)	20	25	33.3	48	50	54	64	66.66	75	100	108	120	135
Input Frequency (MHz)	10	10	10	16	20	13.5	16	20	15	20	27	24	27
S1, S0	0,0	1, 1	M, 1	M, 0	1, 1	1, 0	1, 0	M, 1	0, 1	0, 1	1, 0	0, 1	0, 1

Table 3. PIN DESCRIPTION

Pin #	Name	I/O	Description
1	X1/CLK	Input	Crystal or External Reference Clock Input
2	V _{DD}	Power Supply	Positive Supply Voltage (3 V to 5.5 V)
3	GND	Power Supply	0 V Ground.
4	REF	CMOS/TTL Output	Buffered Crystal Oscillator Clock Output
5	CLKOUT	CMOS/TTL Output	Clock Output
6	S0	CMOS/TTL Input	Multiplier Select Pin – Connect to V _{DD} or GND. Internal Pull-up Resistor.
7	S1	Three-level Input	Multiplier Select Pin – Connect to V _{DD} , GND or Float to M.
8	X2	Crystal Input	Crystal Input – Do Not Connect when Providing an External Clock Reference

Table 4. ATTRIBUTES

Charac	Value	
ESD Protection Human Body Model Machine Model		> 8 kV > 600 V
Moisture Sensitivity, Indefinite Tir	Level 1	
Flammability Rating Oxygen Index: 28 to 34		UL 94 V-0 @ 0.125 in
Transistor Count	6700 Devices	
Meets or Exceeds JEDEC Stand	ard EIA/JESD78 IC Latchup Test	

1. For additional Moisture Sensitivity information, refer to Application Note AND8003/D.

NB3N502

Table 5. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V_{DD}	Positive Power Supply	GND = 0 V		7	V
VI	Input Voltage			GND - 0.5 = V _I = V _{DD} + 0.5	V
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	SOIC-8 SOIC-8	190 130	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 1)	SOIC-8	41 to 44	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JEDEC standard multilayer board – 2S2P (2 signal, 2 power).

Table 6. DC CHARACTERISTICS (V_{DD} = 3 V to 5.5 V unless otherwise noted, GND = 0 V, T_A = -40°C to +85°C) (Note 2)

Symbol	Characteristic	Min	Тур	Max	Unit
I _{DD}	Power Supply Current (unloaded CLKOUT operating at 100 MHz with 20 MHz crystal)		20		mA
V _{OH}	Output HIGH Voltage I _{OH} = -25 mA TTL High	2.4			V
V _{OL}	Output LOW Voltage I _{OL} = 25 mA			0.4	V
V _{IH}	Input HIGH Voltage, CLK only (pin 1)	(V _{DD} / 2) + 1	V _{DD} / 2		V
V _{IL}	Input LOW Voltage, CLK only (pin 1)		V _{DD} / 2	(V _{DD} / 2) –1	V
V _{IH}	Input HIGH Voltage, S0, S1	V _{DD} - 0.5			V
V _{IL}	Input LOW Voltage, S0, S1			0.5	V
V _{IM}	Input level of S1 when open (Input Mid Point)		$V_{DD} \div 2$		V
C _{in}	Input Capacitance, S0, S1		4		pF
I _{SC}	Output Short Circuit Current		± 70		mA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

2. Parameters are guaranteed by characterization and design, not tested in production.

Table 7. AC CHARACTERISTICS (V _{DD} = 3 V to 5.5	V unless otherwise noted, GND = 0 V, $T_A = -40^{\circ}C$ to +85°C) (Note 3)
---	--

Symbol	Characteristic	Min	Тур	Max	Unit
f _{Xtal}	Crystal Input Frequency	5		27	MHz
f _{CLK}	Clock Input Frequency	2		50	MHz
fout	Output Frequency Range V _{DD} = 4.5 to 5.5 V (5.0 V ± 10%) V _{DD} = 3.0 to 3.6 V (3.3 V ± 10%)	14 14		190 120	MHz MHz
DC	Clock Output Duty Cycle at 1.5 V up to 190 MHz	45	50	55	%
t _{jitter (rms)}	Period Jitter (RMS, 1 σ)		15		ps
t _{jitter (pk-to-pk)}	Total Period Jitter, (peak-to-peak)		±40		ps
t _r /t _f	Output rise/fall time (0.8 V to 2.0 V / 2.0 V to 0.8 V)		1	2	ns

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

3. Parameters are guaranteed by characterization and design, not tested in production.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

APPLICATIONS INFORMATION

High Frequency CMOS/TTL Oscillators

The NB3N502, along with a low frequency fundamental mode crystal, can build a high frequency CMOS/TTL output oscillator. For example, a 20 MHz crystal connected to the NB3N502 with the 5X output selected (S1 = L, S0 = H) produces a 100 MHz CMOS/TTL output clock.

External Components

Decoupling Instructions

In order to isolate the NB3N502 from system power supply, noise de-coupling is required. The 0.01 μ F decoupling capacitor has to be connected between V_{DD} and GND on pins 2 and 3. It is recommended to place de-coupling capacitors as close as possible to the NB3N502 device to minimize lead inductance. Control input pins can be connected to device pins V_{DD} or GND, or to the V_{DD} and GND planes on the board.

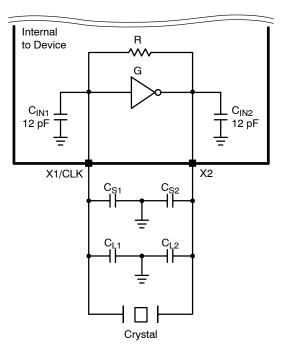


Figure 3. Using a Crystal as Reference Clock

Series Termination Resistor Recommendation

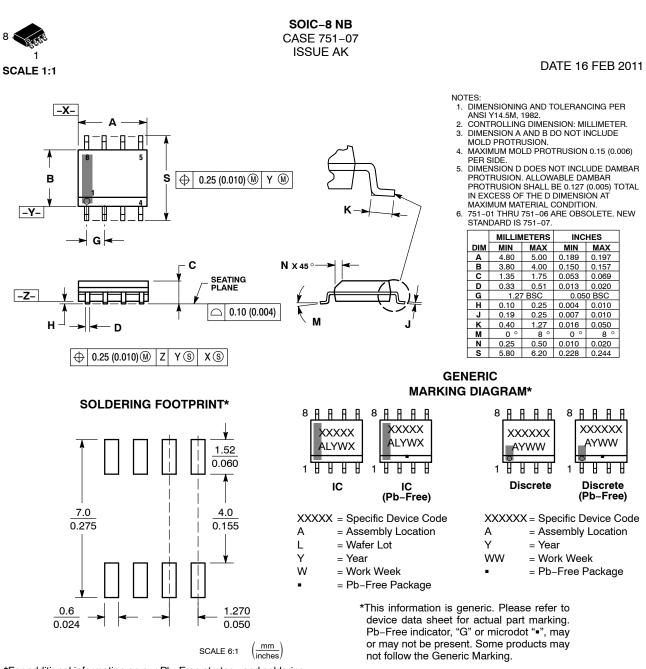
A 33 Ω series terminating resistor can be used on the CLKOUT pin.

Crystal Load Capacitors Selection Guide

The total on-chip capacitance is approximately 12 pF per pin (C_{IN1} and C_{IN2}). A parallel resonant, fundamental mode crystal should be used.

The device crystal connections should include pads for small capacitors from X1/CLK to ground and from X2 to ground. These capacitors, C_{L1} and C_{L2} , are used to adjust the stray capacitance of the board to match the nominally required crystal load capacitance (C_{LOAD} (crystal)). Because load capacitance can only be increased in this trimming process, it is important to keep stray capacitance to a minimum by using very short PCB traces (and no vias) between the crystal and device. Crystal load capacitors, if needed, must be connected from each of the pins X1 and X2 to ground. The load capacitance of the crystal (C_{LOAD} (crystal)) must be matched by total load capacitance of the oscillator circuitry network, C_{INX} , C_{SX} and C_{LX} , as seen by the crystal (see Figure 3 and equations below).

 $\begin{array}{l} C_{LOAD1} = C_{IN1} + C_{S1} + C_{L1} \mbox{ [Total capacitance on X1/CLK]} \\ C_{LOAD2} = C_{IN2} + C_{S2} + C_{L2} \mbox{ [Total capacitance on X2]} \\ C_{IN1} \approx C_{IN2} \approx 12 \mbox{ pF (Typ) [Internal capacitance]} \\ C_{S1} \approx C_{S2} \approx 5 \mbox{ pF (Typ) [External PCB stray capacitance]} \\ C_{LOAD1,2} = 2 \bullet C_{LOAD} \mbox{ (Crystal)} \\ C_{L2} = C_{LOAD2} - C_{IN2} - C_{S2} \mbox{ [External load capacitance on X2]} \\ C_{L1} = C_{LOAD1} - C_{IN1} - C_{S1} \mbox{ [External load capacitance on X1/CLK]} \end{array}$


Example 1: Equal stray capacitance on PCB

 $\begin{array}{l} C_{LOAD} \; (Crystal) = 18 \; pF \; (Specified by the crystal manufacturer) \\ C_{LOAD1} = C_{LOAD2} = 36 \; pF \\ C_{IN1} = C_{IN2} = 12 \; pF \\ C_{S1} = C_{S2} = 6 \; pF \\ C_{L1} = 36 - 12 - 6 = 18 \; pF \\ C_{L2} = 36 - 12 - 6 = 18 \; pF \end{array}$

Example 2: Different stray capacitance on PCB trace X1/CLK vs. X2 $C_{LOAD} \ (Crystal)$ = 18 pF

 $\begin{array}{l} C_{LOAD1} = C_{LOAD2} = 36 \ \text{pF} \\ C_{IN1} = C_{IN2} = 12 \ \text{pF} \\ C_{S1} = 4 \ \text{pF} \ \& \ C_{S2} = 8 \ \text{pF} \\ C_{L1} = 36 - 12 - 4 = 20 \ \text{pF} \\ C_{L2} = 36 - 12 - 8 = 16 \ \text{pF} \end{array}$

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	DESCRIPTION: SOIC-8 NB					
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product on hcidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically			

SOIC-8 NB CASE 751-07 ISSUE AK

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR 3. 4. EMITTER EMITTER 5. BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: CATHODE 1 PIN 1. 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT 6. IOUT IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: PIN 1. GROUND BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE P-SOURCE 3 P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE 2. ANODE SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC COMMON CATHODE/VCC 3 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 COMMON ANODE/GND 8. STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. 4. DRAIN, #2 GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 DRAIN 1 7. 8. **MIRROR 1** STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. LINE 1 OUT 8. STYLE 27: PIN 1. ILIMIT 2 OVI 0 UVLO З. 4. INPUT+ 5. SOURCE SOURCE 6. SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: ANODE ANODE PIN 1. 2. ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE #2 3. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. 4. GATE 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE 2. EMITTER 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION: SOIC-8 NB PAGE						
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product o cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically			

SOURCE 1/DRAIN 2

7.

8. GATE 1

7.

8

rights of others

COLLECTOR, #1

COLLECTOR, #1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Onsemi: NB3N502DG NB3N502DR2G